EnvSDD: Benchmarking Environmental Sound Deepfake Detection

Han Yin'?, Yang Xiao®*, Rohan Kumar Das*, Jisheng Bai', Haohe Liu®
Wenwu Wang®, Mark D Plumbley®

'Northwestern Polytechnical University, China; 2Speech Lab, Alibaba Group, China; 3The

University of Melbourne, Australia; *Fortemedia Singapore, Singapore; *Centre for Vision, Speech
and Signal Processing (CVSSP), University of Surrey, UK

yinhan@mail.nwpu.edu.cn

Abstract

Audio generation systems now create very realistic soundscapes
that can enhance media production, but also pose potential risks.
Several studies have examined deepfakes in speech or singing
voice. However, environmental sounds have different charac-
teristics, which may make methods for detecting speech and
singing deepfakes less effective for real-world sounds. In addi-
tion, existing datasets for environmental sound deepfake detec-
tion are limited in scale and audio types. To address this gap,
we introduce EnvSDD, the first large-scale curated dataset de-
signed for this task, consisting of 45.25 hours of real and 316.74
hours of fake audio. The test set includes diverse conditions to
evaluate the generalizability, such as unseen generation models
and unseen datasets. We also propose an audio deepfake de-
tection system, based on a pre-trained audio foundation model.
Results on EnvSDD show that our proposed system outperforms
the state-of-the-art systems from speech and singing domains.
Index Terms: sound deepfake detection, environmental sound-
scape, deep learning, EnvSDD

1. Introduction

Imagine sitting in a college classroom when you suddenly hear
a fire alarm start, its sound gradually growing louder. At first,
you may think it is a false alarm. Then soon, you hear fran-
tic rush of footsteps and even a siren at a distance. Instinc-
tively, most of you would rise from your seats and begin to
move toward the exit. But what if these sound events are not
real at all? What if these sounds are created by artificial intel-
ligence (AI)? A similar event was shown in a TikTok video!
that received over 10 million views. This story shows a new
and growing concern in our society: the rise of Al-generated
environmental sounds. With the growth of open-sourced audio
generation models, such as AudioLDM [1] and AudioLCM [2],
it is now becoming easier for people to create very realistic en-
vironmental sounds, which previously needed entire teams of
professional individuals to produce. While these technologies
have vast applications in fields such as virtual reality and media
production, they also pose serious threats, such as the potential
for malicious use in misinformation and the generation of fake
audio content that can mislead the public [3]. Therefore, these
societal concerns show a strong need to develop methods that
can detect fake environmental sounds accurately.

The goal of environmental sound deepfake detection
(ESDD) is to determine whether a sound clip is sourced from
real-life scenarios or has been artificially generated by models.
Recently, speech and singing voice deepfake detection have re-
ceived widespread attention, leading to various challenges and

Thttps://www.tiktok.com/@andreaspoly/video/7291362107491093803

benchmarks [4-6]. However, ESDD poses challenges that are
different from those in speech and singing domains. For exam-
ple, speech and singing have specific pitch ranges, but environ-
mental sounds lack steady rhythms and fixed tones. In addition,
for environmental sounds, many sound events may occur simul-
taneously, a phenomenon that may not be as apparent in pure
speech or singing clips. Therefore, we question whether meth-
ods from speech and singing deepfake detection can be directly
applied to environmental sounds.

Several studies have focused on fake environmental sound
detection. In SceneFake [7], the authors first enhance the real
speech involving a scene (e.g., “Airport”), then add another
scene to the enhanced speech (e.g., “Street”), resulting in a
scene-fake audio clip. Similar to SceneFake, in EnvFake [8],
the authors create a multimodal scene-fake dataset by combin-
ing visual and audio information. These works focus on scene-
consistency detection, where all environmental audio clips are
sourced from real-life scenarios rather than being generated by
Al models. Ouajdi et al. [9] use real-fake paired audio data
from a Foley sound synthesis challenge for ESDD, where fake
sounds are generated by 44 submitted audio generation systems.
However, this work only includes monophonic audio, and only
conducts in-domain evaluation, without considering the mod-
els’ generalization to unseen domains. In FakeSound [10], the
authors mask a portion of the audio and use audio inpainting
models to generate new audio in the masked segments, creating
fake sound clips. In this work, most audio clips are polyphonic,
with limited consideration of monophonic conditions. In addi-
tion, they use a relatively small subset of AudioCaps [11] for
generating fake audio, with just about 5 hours of data.

In our work, we present EnvSDD, the first large-scale
dataset for ESDD, with 45.25 hours of real audio and 316.74
hours of deepfake environmental sound clips. We sample real-
life sound clips from six datasets, covering both monophonic
and polyphonic conditions. Additionally, we use five state-of-
the-art (SOTA) audio generation models to generate the deep-
fake audio clips. Specifically, we consider two types of deep-
fakes, including the two primary paradigms of audio generation:
text-to-audio (TTA) and audio-to-audio (ATA). To evaluate the
dataset, we first train two SOTA systems from the speech and
singing voice deepfake detection domains on EnvSDD. Then,
we propose a new system leveraging a pre-trained audio foun-
dation model (i.e., BEATSs [12]), to improve the detection per-
formance. The main contributions of this paper are as follows.

* We present EnvSDD, a large-scale dataset for ESDD.

* We propose a new detection system, which outperforms
the baselines across all evaluation scenarios. The dataset,
models, and codes are all publicly available.’

Zhttps://envsdd.github.io
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Figure 1: Pipeline for creation of the proposed EnvSDD dataset.

2. EnvSDD Dataset

As shown in Figure 1, the EnvSDD dataset includes two types
of deepfakes: TTA and ATA. We first sample real-life audio
clips from various publicly available datasets and then generate
deepfake clips using the TTA and ATA models.

2.1. Real Data Collection

EnvSDD includes both monophonic and polyphonic audio.
Monophonic audio contains a single event per clip, while poly-
phonic refers to audio with multiple overlapping sound events.
These two types are considered to account for the diverse range
of real-world scenarios, where both isolated and overlapping
sound events occur frequently. For monophonic audio, we use
UrbanSound8K [13] and DCASE 2023 Task7 Dev [14] as the
sources of real data. For polyphonic audio, we utilize TAU
UAS 2019 Open Dev [15], TUT SED 2016 [16], TUT SED
2017 [17,18] and Clotho [19]. All audio samples are segmented
into 4-second clips, and since most audio generation models are
trained with 16 kHz audio, we resample all clips to 16 kHz.

Monophonic datasets: UrbanSound8K is a widely used
dataset for environmental sound classification, specifically de-
signed for urban sound recognition tasks, which contains 10 dif-
ferent urban sound classes, such as “siren” and “drilling”. We
select audio clips with a duration of 4 seconds and a sampling
rate above 16 kHz from it, resulting in 4,523 clips. DCASE
2023 Task7 Dev refers to the development set of Task 7 from
DCASE 2023 challenge, which contains real-life audio clips
from various public resources with 7 event classes.

Polyphonic datasets: TAU UAS 2019 Open Dev is de-
signed for acoustic scene classification, consisting of audio clips
recorded in 14 different real-life acoustic scenes, such as “air-
port” and “office”. TUT SED 2016 and TUT SED 2017 are
two environmental audio datasets for sound event detection,
containing real-life recordings from various indoor and outdoor
scenarios. Clotho is a dataset designed for audio captioning
tasks, which contains audio clips from FreesSound [20], and
human-written captions describing the audio content.

Since DCASE 2023 Task 7 Dev and Clotho are used only
for evaluation, we select a small subset from these datasets, cov-
ering various real-life scenarios. Additionally, the “DogBark”
and “GunShot” events in DCASE 2023 Task 7 Dev overlap with
UrbanSound8K, and are therefore excluded.

2.2. Deepfake Data Generation

In the proposed EnvSDD dataset, pre-trained TTA and ATA
models are applied to generate deepfake audio clips. As shown
in Table 1, we use five models for TTA and two models for ATA,
with an inference step of 100.

Table 1: Overview of audio generation models used in the pro-
posed EnvSDD dataset.

Deepfake Type ‘ Generation Model (G#)

AudioLDM (G1)
AudioLDM 2 (G2)
AudioGen (G3)
TangoFlux (G4)
AudioLCM (G5)

Text-to-Audio

AudioLDM (G1)
AudioLDM 2 (G2)

Audio-to-Audio

TTA Deepfake: We used 5 models for generating TTA deep-
fake clips, namely, AudioGen [21], AudioLDM [1], AudioLDM
2 [22], TangoFlux [23] and AudioLCM [2]. An important chal-
lenge is how to generate accurate and meaningful captions for
audio clips, which are applied as inputs to the TTA models.

As shown in Figure 1, for monophonic audio, we directly
rewrite the metadata as the audio caption. “Rewrite” refers to
removing meaningless characters from the metadata, capital-
izing the first character, and adding a period in the end (e.g.,
“gun_shot” is rewritten to “Gun shot.”). For polyphonic audio,
a large language model (LLM) is applied to generate captions
based on the metadata. Specifically, we use Mistral 7B [24] as
the LLM, with prompts configured as follows. If the metadata
contains both scene and event labels, the prompt is “Prompt A”
here as shown in the box:

This clip is recorded in {scene label}, where the following
events or sounds are happening: {event labels}.

A caption is a descriptive sentence, which vividly depicts
the acoustic content of the audio clip. Please provide one
sentence for the caption to directly describe the sound.

If the metadata contains only the scene label, the prompt is:

This clip is an audio clip recorded in {scene label }.

A caption is a descriptive sentence, which vividly depicts
the acoustic content of the audio clip. Please provide one
sentence for the caption to directly describe the sound that
might occur in the scene.

By prompting Mistral 7B, we generate a caption for each audio
clip. It is noted that Clotho already provides audio captions, so
we do not generate captions for it.



Table 2: Statistics of the proposed EnvSDD dataset.

Audio Type \ Source Dataset (D#) \ #Real #Fake (TTA) #Fake (ATA)
Monophonic UrbanSound8K (D1) 4,523 22,615 9,046
P DCASE 2023 Task7 Dev (D2) 500 2,500 1,000
TAU UAS 2019 Open Dev (D3) 31,700 158,500 63,400
Polvohonic TUT SED 2016 (D4) 1,695 8,475 3,390
P TUT SED 2017 (D5) 1,806 9,030 3,612
Clotho (D6) 500 2,500 1,000

Table 3: Statistics of train, validation, and test sets in EnvSDD.

Split |Source Datasets | Generation Model | #Real #Fake

TTA Deepfake
Train | D1, D3, D4, D5 G1,G2,G3 27,811 83,433
Valid | D1, D3, D4, D5 G1, G2,G3 7,942 23,826
Test 01| D1, D3, D4, D5 G1,G2,G3 3,971 11,913
Test 02| D1, D3, D4, D5 G4, G5 3971 7,942
Test 03 D2, D6 G1,G2,G3 1,000 3,000
Test 04 D2, D6 G4, G5 1,000 2,000
ATA Deepfake
Train | D1, D3, D4, D5 Gl 27,811 27,811
Valid | D1, D3, D4, D5 Gl 7,942 7,942
Test 01| D1, D3, D4, D5 Gl 3971 3,971
Test 02| D1, D3, D4, D5 G2 3971 3,971
Test 03 D2, D6 Gl 1,000 1,000
Test 04 D2, D6 G2 1,000 1,000

ATA Deepfake: AudioLDM and AudioLDM 2 are used
for ATA, where a latent diffusion model conditions on acous-
tic representations to generate audio events resembling those
in the input. AudioLDM relies on CLAP [25] features, while
AudioLDM 2 leverages AudioMAE [26], which captures finer
acoustic details. Therefore, ATA with AudioLDM 2 produces
audio that more closely matches the original, while AudioLDM
generates semantically similar but acoustically distinct outputs.

2.3. Dataset Splits

For clarity, as shown in Table 1 and Table 2, we label the source
datasets as D1-D6 and the generation models as G1-G5. Table
3 presents statistics for different dataset splits. To comprehen-
sively evaluate detection performance across various scenarios,
we define four distinct test conditions.

Test 01 is for in-domain evaluation, where the source
datasets and audio generation models are seen during training.
Test 02-04 are designed for out-of-domain evaluation. Specif-
ically, Test 02 evaluates generalizability by using generation
models that are different from those during training, assessing
the detection model’s ability to handle unseen audio generation
models. Test 03 focuses on generalizability to unseen datasets
by ensuring the source datasets are significantly different from
those used in training and validation. Test 04 presents the most
challenging scenario, as both the source datasets and generation
models differ from those during training.

3. Model Architectures
3.1. Baselines: AASIST and W2V2+AASIST

Recent studies in speech deepfake detection show that key clues
can appear in both the spectral and temporal domains [27]. AA-

SIST [28] is an end-to-end system that uses a novel heteroge-
neous stacking graph attention layer [29] to learn these features.
This model has been applied as the baseline in various speech
and singing voice deepfake detection challenges [4-6]. Build-
ing on AASIST, W2V2+AASIST [30] uses a pre-trained speech
foundation model, wav2vec 2.0 XLS-R [31], as the front-end,
to extract representations from the waveform, achieving SOTA
results on ASVspoof2021 [5] and SingFake datasets [6]. The
wav2vec 2.0 XLS-R (W2V2) model was pre-trained on 128
languages and approximately 436K hours of unlabeled speech
data with self-supervised learning. We apply these two systems
as the baselines, to explore whether methods from speech and
singing domains can be applied to environmental sounds.

3.2. Proposed BEATs+AASIST System for ESDD

While W2V2+AASIST works well for speech deepfakes and
shows the benefits of a pre-trained speech foundation model, we
hypothesize that such a model may not generalize well for di-
verse sound scape in environmental sounds. Therefore, we pro-
pose a novel system that integrates an audio foundation model
with AASIST. We select the audio foundation model due to its
pre-training on large-scale, diverse sound datasets, enabling it to
capture robust and rich acoustic features for environmental au-
dio. In our work, we use BEATSs [12], a pre-trained model that
learns deep audio representations from AudioSet-2M [32] with
self-supervised learning. BEATs begins with a random projec-
tion as an acoustic tokenizer for mask and label prediction, then
refines the tokenizer with its learned knowledge in repeated cy-
cles. As in W2V2+AASIST, the output of BEATS is fed to a
RawNet2-based residual encoder [33] that learns higher-level
feature representations. Then a self-attention aggregation layer
is applied to extract the acoustic representation, which is fed to
the AASIST model to obtain a two-class prediction.

By replacing the W2V2 front-end with BEATS, our pro-
posed system is expected to capture the complex nature of en-
vironmental sounds more precisely. This integration of BEATS
with AASIST is anticipated to enhance performance in detect-
ing environmental audio deepfakes. We evaluate all the three
systems on our proposed EnvSDD dataset.

4. Experiments and Results
4.1. Experimental Setup

During training and fine-tuning, we use a batch size of 32 and
the Adam optimizer with a weight decay of 0.0001. When train-
ing AASIST from scratch, the initial learning rate is 0.001. For
fine-tuning W2V2+AASIST and BEATs+AASIST, we reduce
the learning rate to 0.00001 to avoid overfitting. The maximum
number of epochs is 50. Training stops early if the validation
loss does not decrease for 5 consecutive epochs.

We consider equal error rate (EER) [34] as the evaluation
metric, which is also common in speech and singing deepfake



Table 4: Performance in EER (%) of baseline and proposed
systems on EnvSDD dataset. “Seen SD” means “Seen Source
Datasets” and “Seen GM” means “Seen Generation Model”.

Test Condition | Fake Type

System Test Set Seen SD Seen GM | TTA ATA
Test 01 v v 0.66 0.28

Test 02 v X 3.70 0.68

AASIST Test 03 X v 6.80 3.00
Test 04 X X 17.50 4.40

Average - - 7.17 2.09

Test 01 v v 0.26 0.38

Test 02 v X 13.04 26.59

W2V2+AASIST | Test 03 X v 10.60 13.30
Test 04 X X 45.80 52.40

Average - - 17.43 23.17

Test 01 v 4 0.08 0.03

Test 02 v X 1.26 0.08

BEATs+AASIST | Test 03 X v 470 220
Test 04 X X 17.20 3.00

Average - - 5.81 1.33

detection. Each system produces a score for a given audio clip,
indicating the confidence that the clip is real. The EER is found
by setting a threshold where the false acceptance rate equals
the false rejection rate. Lower EERs indicate better detection
performance of a system.

4.2. Performance of Baselines and Proposed System

We first focus on the performance of the two baselines AA-
SIST and W2V2+AASIST in Table 4 under all test conditions.
Although both models perform well under the seen condition
of Test 01, their performance drops significantly under the un-
seen test conditions of Tests 02-04. It should also be noted that
the introduction of W2V2 in AASIST generally improves the
performance of speech deepfake detection as reported in [30],
but the same trend is not observed for deepfake sound detection
from the results observed in Table 4. This may be due to the fact
that W2V2 was pre-trained on pure speech data, and speech ex-
hibits significant differences in acoustic features compared to
environmental sounds.

We now compare the performance of our proposed
BEATs+AASIST system with the two baselines as reported in
Table 4. It is evident that the introduction of BEATS signifi-
cantly benefits the AASIST system, which was pre-trained on
environmental sounds. This suggests that it is able to cap-
ture acoustic nuances more effectively than speech-based pre-
trained models. BEATs+AASIST outperforms both baseline
models across all test conditions, validating our hypothesis of
leveraging an audio foundation model.

Let us consider having a closer look at the performances
of all the systems under each test condition. The low EERs
(below 1%) for all systems in Test 01 indicates that in-domain
sound deepfake detection is a relatively simple task. In Test 02,
the trained baselines have to handle fake data generated by un-
seen TTA and ATA models. The results show a significant drop
in performance on Test 02 compared to Test 01, demonstrat-
ing the detection model’s limited ability to generalize across
different audio generation models. Similarly, in Test 03, the
source datasets are out-of-domain for the trained detection mod-
els, leading to degraded performance compared to Test 01. Fur-
thermore, we observe that AASIST and BEATs+AASIST sys-
tems are more affected by unseen source datasets than unseen
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Figure 2: Performance in EER (%) of W2V2+AASIST and
BEATs+AASIST on monophonic and polyphonic data.

audio generation models, whereas W2V2+AASIST shows an
opposite trend indicating more dependence on generation mod-
els. Test 04 is the most challenging condition as both the audio
generation models and the source datasets are out-of-domain,
resulting significant drop in performance for all the systems.
However, the proposed BEATs+AASIST system still performs
substantially better than the two baselines.

4.3. Performance for Monophonic and Polyphonic Audio

In this work, the EnvSDD dataset contains two types of au-
dio, monophonic and polyphonic, where the former has only
a single sound event, while the latter exhibits multiple over-
lapping events. Figure 2 shows the detection performance
of W2V2+AASIST and BEATs+AASIST on monophonic and
polyphonic subsets. For BEATs+AASIST, the EERs on mono-
phonic audio are generally higher than those on polyphonic au-
dio, indicating that it is more challenging to detect monophonic
deepfake audio. However, the EER on monophonic audio is
lower than that on polyphonic audio for TTA deepfake detection
in Test 03, where the source datasets are unseen during training.
For W2V2+AASIST, the model performs better on polyphonic
audio in Test 01 and Test 02, whereas the opposite trend is ob-
served in Test 03 and Test 04, with better performance on mono-
phonic audio. Overall, the proposed BEATs+AASIST outper-
forms W2V2+AASIST in all cases, further demonstrating the
effectiveness of the pre-trained audio foundation model.

5. Conclusions

In this work, we have proposed EnvSDD, the first large-scale
dataset with real and deepfake environmental audio clips for
ESDD. We use two SOTA systems from the speech and singing
voice deepfake detection domains as baselines and proposed
a new system based on a pre-trained audio foundation model,
BEATSs. The results on EnvSDD under various test conditions
demonstrate that the proposed system outperforms the two base-
lines. However, its generalization to unseen domains remains
limited, which should be further explored in future work.
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